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Abstract. Using the replica method we investigate leaming from correlated data in a perceptron. 
Both types of association-'spatial'-within each example, and 'semantic:-arnong the different 
on-are considered for both Boolean and continuous weights and output functions. 'Spatial' 
correlations of data may significantly improve the leaming propelties, whereas the 'semantic' 
ones do not practically inRuence them. 

1. Introduction 

The progress in *e theory of neural networks has become possible due to an extensive use 
of statistical mechanics methods. One of the most significant and interesting problems in 
this area concerns the theory of learning. A new and powerful line of research was initiated 
by Gardner's famous paper 111, and then developed in various directions (see, for instance, 
[2-7]). One of these, extensions, which has recently attracted much attention, relates to 
the so-called learning from examples [%lo]. This problem treats, roughly speaking, the 
dependence between two networks-the learning one (called a student) and the target one (a 
teacher)-= a function of learning properties (the amount of presented data, the temperature, 
etc). 

In this paper we .investigate learning from associated sets of data, which seems to 
be a more realistic situation than the previously studied case of learning from random 
examples. For instance, 'semanuc' correlations arise ,when we consider leaming of 
categories, subcategories of pattems,'etc. It has been recently demonstrated that attractors 
observed in neurophysiological experiments,are 'semantically' associated [11, 121. Here the 
amount of correlation' depends on the temporal interval between the learning times of the 
corresponding paGrns. On the other hand, examples of 'spatial' associations are known 
from the theory of optical information processing. Visual data usually consist of locally 
correlated blocks (see [131). 

2. Formulation of the problem 

We consider a single-layer perceptron with N input nodes and the output rule g (see [SI). 
The teacher (target) network is then defined by the updating rule 
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while the student (learning) one by 

where j = 1,. . . , N enumerates the sites, and p = 1, . . . , mN the patterns. 

learning rule (written as the teacher) by the student has the following form 
The generalization cost (error) function, which effectively measures the realization of  a 

with a certain measure dp([k;]) in the example space. For a realizable rule, there then 
exists a weight vector {JYJ, such that 

m;1, tS;H = 0 (4) 

for the whole set IS;]. 
Function (3) seems to be the most appropriate for a network with a linear ou ut, because 

the student and teacher networks. It is, the one traditionally used in the problem of learning 
a rule (see [14,8,10]). Other examples of  the cost functions, however, have also been 
formulated and investigated [3,15,10,9]. 

of its proportionality to the difference between the local fields hio) = cj Jj’ 8 Sr[@ of 

One then defines the quantities of interest-the generalization and the training errors 

where ((.))s denotes the quenched average over the distribution of  the [Sy], and (.)T means 
the thermal average with respect to the Gibbs probability distribution 

with p = U N ,  B = 1/T. The training energy E((Jj}) is defined by 

the partition function 2 has the form 
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while dp((Jj]) is.a measure in the weight space. The graphs of 6- and .st are called the 
learning curves. 

At the end of this section we write down, as usual, the general form of. the replica- 
symmetric freeenergy density F, which must be minimized in order to find the values of 
the proper order parameters 

(10) 
1 

. N  
- p F = = - ( ( l n 2 ) ) = G 1 + G 2  

where the functions GI, Gz will be specified for each case considered below. 

3. ‘Spatial’ associations 

We introduce ‘spatial’ correlations of the examples (see [16-181) in the form 

Ccsy,) = 0 (11) 

((S?S?)) 1 1  = a,,. cj7. (12) 

Then we define the measure dp((SJ]) 

Note that the inputs [Sf) are continuous   in our model. One. however, should stress that, 
by the~validity of the central limit theorem, there is no difference between the continuous 
inputs introduced above and the binary ones’in the thermodynamic limit N + ca. 

Here we divide our analysis into the two subcases depending on the form of the output 
function g. 

3.1. Linear outputfunction g(x) = x 

3.1.1. Continuous weights. We will consider the case of continuous couplings ( J j )  satisfying 
the spherical normalization constraint 

. 

To this end one introduces the order parameteri 
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and their conjugated counterparts f"B, Fe, and re. We also choose a torus topology for 
the network, and then the trsslational (rotational) invariance of the positively defined, 
symmetric association matrix C (with the elements Cjy) 

W Tarkowski and M Lewenstein 

Cjj, = C(l j  -~ j ' l) .  (1% 

In order to calculate the free energy density 3 (the function G I )  the Fourier transform can 
be thus simply performed (see [17] for more details). One then may write 

with [ck] being a set of eigenvalues of the correlation tensor C(l j -  j ' l) ,  and [x) the Fourier 
components of { J j ) .  We also assume the self-averaging of the sums over k = 1,. . . , N 
in the thermodynamic limit N -+ a?, so ((.))c denotes the average with respect to the 
eigenvalue spectrum of the matrix Cjj, (see [19,17]). Finally we make a replica-symmetric 
ansatz q'@ = q,  Q@ = Q ,  r'I = r ,  R' = R, f"0 = f, F E  = F ,  and E# = E ,  where Ea is 
introduced to assure the normalization constraint (14). 

In our model we require that the teacher weights {J;] do not depend on the learning 
process, and then, thanks to the spherical normalization of [J;) (14), and to the fact that 
((C)), = 1, one may put m = 1. 

After performing several Gaussian integrals, the functions GI and Gz are obtained 

G I  = $ E  + iqf - r R  - 4 Q F  - i((ln(E+Cf -CF)) )c  

The free energy density F must now be minimized over all the order parameters and their 
conjugated counterparts. 

To evaluate the learning curves one has to have the appropriate form of the generalization 
and training errors for the case investigated (see [8]) 

- 

= +(e+ 1) - R , (26) 

The values of q ,  Q and R in the above expressions are to be calculated from the extremized 
sum of equations (24) and (25). 
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Both errors may now be calculated numerically, but an alternative way for reaching this 
task is to use the perturbative approach. This consists in evaluating the proper quantities 
in the~form of series with respect to a small parameter (the details will be described in 
[20]). One may estimate in this manner the asymptotic behaviour of the generalization and 
training emors. This is exactly the approximation that we adopt in the present work. We 
are not generally interested in the behaviour of learning curves far from the perfect learning 
limit. 

For the noiseless case (T  = 0) near the point a =' 1 (when q + Q [17]), evaluating 
the saddle-point equations in powers of (1 -a), one obtains ~ ~ 

for 01 close to 1, and E~ = ~ O  for a > 1, while et = 0 for all values of a. From the Holder 
inequality we then get 

so the generalization error (28) is smaller than in the case of leaming from random examples 
(where E;=  1 -a). A transition to perfect learning sttll occurs, however, at 01 = 1. The 
numerical solution of the saddle-point equations (obtained by differentiating equations (24) 
and (25)) indicates that expression (28) also holds. for small values of a with quite good 
accuracy. For a = 0, however, one should expect = 1 independently from the value of 
T ,  the kind of association, and from the features of the output functions and weights. 

For a finite temperature the perturbative approach (expansion in l / a )  gives 

The first terms on the left-hand side of equations (30) and (31) agree with the theory of 
the so-called smooth networks  see^ [SI). In our case the values of both errors, however, 
are smaller. For non-zero temperature the transition to peifect learning does not occur 
(obviously E~ + 0, when a + 00). 

3.2. Boolean output function g(x )  = signx 

All general expressions and statements from the previous subsection hold for the case of 
the binary output function the only difference being in the form of the function Gz, which 
now reads as 

G 2 = Z a ~ m D y ~ ~ D t l n [ e - P + ( 1  - e - B ) H ( p ) ]  . (32) 

where 

(33) 

(34) 
m 

H ( p )  =,I Dx 
P 
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and 
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t m - y R  . G P =  

For the binary output function the generalization error has the following form 

E - -cos-’ 2 (5) 
6 -  z 

(35) 

with the saddle-point values of R, Q. 

B + 00 limit 
Using, as in the previous case, the perturbative approach, one gets in the noiseless 

(37: 

The exact formula for the generalization error may be obtained using the Biirmann-Lagrange 
series expansion (see [Zl]), and does not practically differ from expression (37) in the 
asymptotic limit 01 + CO. It is ~ 0 5 t h  stressing that in the case of a given eigenvalue 
distribution of the correlation tensor C (for instance, uniform or semicircular), an optimal 
width for it usually exists, for which the generalization error takes its minimal value. 

The presence of ‘spatial’ associations may, therefore, significantly improve the 
generalization properties of a perceptron. Note that the best result for learning from random 
(uncorrelated) examples-using the Bayes algorithm reads as E~ % 0.88/ot (see 122, IO]). 

For a finite temperature the calculation is somewhat sophisticated, but it is’easy to see 
that the learning curves decrease with a 1/01 tail for all T .  

3.2.1. Boolean weights. We have not been able to estimate either of the considered errors 
for the case of ‘spatially’ associated data learned in a perceptron with binary couplings, 
because of difficulties in evaluating the explicit form of the function GI. 

4. ‘Semantic’ correlations 

We introduce ‘semantic’ associations (see [16,17]) by putting 

((s;s$)) = c,,,c?jp 

for unbiased examples 

((S,?)) = 0. 

(38) 

(39) 
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One then defines the order parameters quo and Rm 
1 q*o = - J ; J ~  
N i  

and f @, ra as their conjugated counterparts. 
The measure dp({Sy]) is now taken to be 

As usual, one assumes the translational invariance of the positively defined, symmetric 
correlation matrix C , ,  

CN,, = C(IP - P'l) . .  (43) 
and then introduces the Fourier transform in order to evaluate the function Gz. 

Here, as in the previous section, we divide the analysis into subcases. 

4.1. Linear output function g ( x )  = x 
4.1.1. Continuous couplings. We' first investigate the case of continuous weights (J j ]  with 
the measure defined in expression~(l4). The functions GI and G2 (which have to be 
exgemized with respect to the order parameters and their conjugated counterparts) take, 
after making a replica-symmetric ansatz for variables q@, R', f " B  and re, the following 
form , ,  

1 1  1 1 ~ r 2 +  f 
G I = - E + - q f - r R - - I n ( E +  f ) + - -  

2 2 -  2 2 E f f  

where the symbol ~((.))c now denotes the average over the eigenvalues of the tensor ' 
value. Differentiating equations (44) and (45) over all~the variables shows easily that in the 
noiseless limit the generalization error reids 

C(lp-p'l). The generalization error is given by &g =' 1 - R, with R taking the saddle-point ~~ 

E g = l - a  (46) 
for 0 < (Y < 1, while E - 0 for E 2 1, and does not differ from the case of learning from P -  random data. The training error E~ = O for all E. 

The non-zero temperature expansion~for asymptotic values of E (i.e. when q;  R + 1)  
 gives 

T T 
2E 8E 

E~ = - + (4((C2))c.- T)T + O(E-~ )  

T ~ T2 
Et = - - - + O((Y4). 

2E SE2 

This result practically holds, as numerical simulations indicate, for~an arbitrary range of T 
and not-too-small E.  The prpcp.ncp. of associations weakly increases the value of zg. 
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4.1.2. Binary couplings. We now consider the case of binary values of the weights (41. 
The measure dp([Jj]) is now taken to be 

W Tarkowski and M Lewenstein 

the function GI takes the form 

while the quantity Gz is given by expression (45). 

example guarantees perfect learning @e. zs = 0 for a % 0). 

Et 

In the noiseless limit T = 0, q,,simple linear analysis shows, even one presented 

For a finite temperature the perturbative approach gives the asymptotic values of eg and 

1 4 
E, = 2e-2u/T + 2 _i((CZ))c - -((CZ))c - I + U(e-6a/T) (52) 

which, however, depend weakly (through the (C’)c) on the eigenvalue distribution of the 

(; T 

conelation matrix 2. .~ 

4.2. Boolean outputfunction g ( x )  = s ignx  

4.2. I .  Continuous weights. At the beginning we examined the case of continuous couplings 
with the measure given by expression (14). 

The function G I  is still of the form given by equation (44), whereas Gz generally reads 
as 

It may be easily checked (see [20]) that in the case of asymptotic behaviour q -+ 1 the 
generalization and training errors differ from their counterparts obtained for random data 
in terms of the order of After a simple calculation of the average over [Sf], and 
shifting the variables (see [S,  ZO]), one may introduce the new ones (?; = x ; / ( l -  4) )  and, 
in this way, change the integal limits. that are, thanks to the presence of the @-function in 
expression (53), of the form: 

hew) lm ndy+exp(-y?-Iy) jm n.izexp(-(‘quadratic form’ of x z ) ] .  
P -RY* 01,P 

The proper rescaling of the variables x;, ye implies that at least the terms U(a-I) do not 
depend on the association tensor ?. Obviously, the higher-order perturbative corrections 
to the known result: E. = 1.25ja f O(a-’) for T = 0, and learning with l j a  tail for 
T # 0 (see [8])-are not easy to obtain by a straightforward calculation, but the numerical 
solutions of the saddle-point equations indicate that they are quite small. 

One should add that both errors behave similarly in the case of other cost functions, 
namely for Gardner-Derrida,~ perceptron and relaxation functions [3,15,9,20]. 
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4.2.2. Binary couplings. A similar situation to that above also holds for binary weights,~but 
only in the replica-symmetric (RS) regime. In such a case the transition to perfect learning 
at an arbitrary temperature (for T = 0, f f c  =~1.245) exists. The higher-order perturbative 
corrections cannot be evaluated easily, but we expect, from the outcomes of the previous 
stages of this paper, a slightly greater value for 01 for the transition. However, breaking the 
RS in the way proposed in [4] implies, roughly speaking, that we must not take the limit 
q 4 1, because the value of q is now determined by the proper saddle-point equations and 
the entropy function vanishing. In this case the calculation of and et is by no means easy, 
but one may hope that the asymptotic values of both errors 'do not differ too much from 
those obtained for training from random examples, where the transition to perfect learning 
(at the noiseless limit) still occurs at 01 = 1.245. 

5. Learning unrealizable rules 

In this case we deal with a situation which is quite similar to that described above, i.e. 
semantic correlations do not significantly influence the learning process (see [20, SI). whereas 
the spatial ones change some of its properties, but their quantitative account is-easy only in 
the case of the so-called unrealizable threshold ([SI), where the teacher transfer function is 
changed to be g ( x )  = x + @. For such a situation the function G2 contains the additional 
term 

and the generalization error in the noiseless T = 0 limit is given by 

with f f  c 1, and E~ =.$@', while a! > 1. The training error E [  = 0 for approximately 
(expansion in powers of @) 

On the other hand, if a > f f c ,  q + 1 as 'T +-a in such a case the quantity B(1 - q) 
remains finite and E [  grows from 0 to the value 

in the asymptotic limit 01 + 00. 

For a non-zero temperature we obtain 

6' T - @ '  1 
E t = - + -  + (@4 - T2)((;] - + U(CL-~) .  

2 2f f  8or2 
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In the case of semantic associations one must add to the function G2 the term 

with 

The T = 0 result then has the following form 

Eg = +p+ 1 - ff 

for ff c 1, and cg = $b2, when a! > 1, while the training error = 0 for 

and, if 01 > a!c, et grows from 0 to its asymptotic value 

in the a! --t 00 limit. One should note that ffe in this model (unlike the case of realizable 
rules) has a similar meaning to that in the problem of storage capacity (see [SI). 

For finite temperature T =- 0 we get 

E - - - +  '* + 2a! "" + (12co~z((C2))c - 3C,2$4 - 8C,2@* 
6 -  2 

6. Conclusions 

Summarizing, we have shown that while the presence of spatial correlations in learned 
examples may strongly influence the learning and generalization abilities of a perceptron, 
the semantic ones do not significantly change them. This is in contrast with the results 
concerning the storage of associated patterns in a perceptron with Boolean output and 
continuous weights. For that case the spatial critical curves are quite similar to the Gardner's 
original one [I, 16,17,18], while the semantic curves may diverge in the limit of large 
correlation lengths (see [16,17]). 

It is worth adding that the difference mentioned above (which occurs between both 
types of data association) in learning and generalization abilities of a perceptron is caused 
by the existence of two types of connection matrix. In the case of semantically correlated 
data the weights ( J j )  are distributed similarly to the one of remembering random examples. 
On the other hand, for training from spatially associated patterns the couplings tensor has 
a certain structure (cf [18]). It is, generally speaking, easier for a perceptron with such a 
connection matrix, which was formed in the learning process, to recognize in an errorless 
manner the new presented data which are constructed (correlated) in the same way, as 
previously learned ones. 
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